A CLASS OF DIRICHLET BOUNDARY VALUE PROBLEMS WHICH ADMIT INFINITELY MANY SOLUTIONS

NICULESCU P. CONSTANTIN AND NICOLAE TARFULEA

Received September 12, 1995; revised November 16, 1995

ABSTRACT. We indicate sufficient conditions under which the Dirichlet boundary value problem

$$\begin{cases} -\Delta_p u = \lambda u |u|^{q-1} + f(x, u) & \text{in } \Omega\\ u |\partial \Omega = 0 \end{cases}$$

admits infinitely many solutions of negative energy.

Let Ω be a bounded smooth domain in \mathbf{R}^N $(N \ge 3)$ and 0 < q < p-1 < N-1. Consider the following Dirichlet boundary value problem for the *p*-Laplacian,

$$(D_{\lambda}) \begin{cases} -\Delta_{p}u = \lambda u |u|^{q-1} + f(x, u) & \text{ in } \Omega \\ u |\partial \Omega = 0 \end{cases}$$

where $f: \overline{\Omega} \times \mathbf{R} \to \mathbf{R}, f = f(x,t)$, is a continuous function which satisfies the following three conditions:

- f_1) f is odd with respect to the second variable;
- f_2) f satisfies an estimate of the form

$$|f(x,t)| \le A_1(x) \cdot |t|^{s_1} + \ldots + A_k(x) \cdot |t|^{s_k}$$

where $s_i \in (q, p-1)$, $A_i \in L^{\alpha_i}(\Omega)$ and $\alpha_i > p^*/(p^* - s_i - 1)$ for each i;

 f_3) There exists C > 0, $\alpha \in (0, p)$ and $\mu \in (0, 1/p)$ such that

$$\left|\mu \cdot f(x,t) \cdot t - F(x,t)\right| \le C|t|^{\alpha}$$

for all x and t.

As usually, $p^{\star} = \frac{N_p}{N-p}$ denotes the critical exponent and

$$F(x,t) = \int_0^t f(x,\xi) d\xi.$$

The problem (D_{λ}) has been investigated by Bartsch and Willem [2], who were able to prove the existence of infinitely many solutions of negative energy for every $\lambda > 0$, when p = 2 and $f(x,t) = t|t|^{r-1}$ with $0 \le r \le 2^* - 1$. That gave a positive answer to a problem raised by Ambrosetti, Brezis and Cerami [1]. The aim of our paper is to show that a similar conclusion is valid in the context of *p*-Laplacian:

Theorem 1. Under the above conditions on p, q and f, the problem (D_{λ}) admits infinitely many solutions of negative energy for every $\lambda > 0$.

A slight modification of our argument yields the existence of infinitely many solutions for (D_{λ}) , even for $\lambda = 0$. However, in this case we are unable to precise the energy sign.

Research partially supported by a CNCSU Grant n^0 132/1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35J65.

The energetic functional associated to (D_{λ}) is $I_{\lambda}: W_0^{1,p}(\Omega) \to \mathbf{R}$, where

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda}{q+1} \int_{\Omega} |u|^{q+1} dx - \int_{\Omega} F(x, u) dx.$$

Since I_{λ} is C^1 and

$$dI_{\lambda}(u)v = \int_{\Omega} \nabla u \cdot \nabla v |\nabla u|^{p-2} dx - \lambda \int_{\Omega} uv |u|^{q-1} dx - \int_{\Omega} f(x, u)v dx$$

for all $u, v \in W_0^{1,p}(\Omega)$, the proof of Theorem 1 reduces to the fact that I_{λ} has infinitely many negative critical values. That is done via a well known topological arugment which can be expressed in terms of genus as follows:

Lemma 2. (See [4], Proposition 9.3). Suppose that E is a real Banach space and $I \in C^1(E, \mathbf{R})$ is an even functional, bounded from below, which satisfies the Palais-Smale condition. Letting

$$\Sigma = \{A \subset E \setminus \{0\} \mid A \text{ is closed and symmetric } \}$$

and

$$\Sigma_n = \{ A \in \Sigma \mid \gamma(A) \ge n \}, \quad n \in \mathbf{N}$$

each number

$$c_n = \inf_{A \in \Sigma_n} \sup_{u \in A} I(u)$$

is a critical value of I. Moreover, if $c = c_k = \ldots = c_{k+j}$ then

$$\gamma(\{u|I(u) = c \text{ and } I'(u) = 0\}) \ge j + 1.$$

In particular, if j > 1, then I admits infinitely many critical points of level c.

We shall show that I_{λ} fulfills the hypotheses of Lemma 2. Clearly, I_{λ} is even.

Lemma 3. The functional I_{λ} is bounded from below.

Proof. Because $W_0^{1,p}(\Omega)$ embedds continuously in any $L^r(\Omega)$ with $1 \leq r \leq p^*$, there exist positive constants C_0, C_1, \ldots, C_k such that

$$I_{\lambda}(u) \ge \frac{1}{p} \|u\|^{p} - \frac{\lambda C_{0}^{q+1}}{q+1} \|u\|^{q+1} - \sum_{i=1}^{k} \frac{C_{i}^{s_{i}+1}}{s_{i}+1} \|A_{i}\|_{L^{\alpha_{i}}} \|u\|^{s_{i}+1}$$

for every $u \in W_0^{1,p}(\Omega)$. The right hand cannot go to $-\infty$, due to the fact that p > q + 1, $s_1 + 1, \ldots, s_k + 1$. That yields the assertion of our Lemma 3.

The fact that the critical values c_n are negative (for $n \ge 1$) constitutes Corollary 5 below. For, we need a technical result about the level sets

 $I_{\lambda}^{c} = \{ u \in W_{0}^{1,p}(\Omega) | I_{\lambda}(u) \le c \}.$

Lemma 4. For every $n \in \mathbf{N}^{\star}$ there exists an $\varepsilon > 0$ such that $\gamma(I_{\lambda}^{-\varepsilon}) \ge n$.

Proof. Let E_n be an *n*-dimensional subspace of $W_0^{1,p}(\Omega)$ and denote by S_r^n the sphere of center 0 and radius r > 0 in E_n . Because $W_0^{1,p}(\Omega)$ embedds continuously in any $L^{(s_i+1)\beta_i}(\Omega)$ (where $1/\alpha_i + 1/\beta_i = 1$) we infer the existence of positive constants C_0, C_1, \ldots, C_k such that

$$I_{\lambda}(\rho u) \leq \frac{1}{p}\rho^{p} - \frac{\lambda}{q+1}(\rho C_{0})^{q+1} + \sum_{i=1}^{k} \frac{(\rho C_{i})^{s_{i}+1}}{s_{i}+1} \|A_{i}\|_{L^{\alpha_{i}}}$$

384

for every $u \in S_1^n$ and every $\rho > 0$. Consequently, there exist $\rho > 0$ and $\varepsilon > 0$ such that

$$I_{\lambda}(\rho u) \leq -\varepsilon$$
 for every $u \in S_1^n$

i.e. $S_{\rho}^{n} \subset I_{\lambda}^{-\varepsilon}$. Because $S_{\rho}^{n} \subset \Sigma_{n}$, we conclude that $\gamma(I_{\lambda}^{-\varepsilon}) \geq n$.

Corollary 5. For every $n \in \mathbf{N}^{\star}$,

$$c_n = \inf_{A \in \Sigma_n} \sup_{u \in A} I_\lambda(u) < 0.$$

It remains to prove that I_{λ} satisfies the Palais - Smale condition. That will be done in several steps, by noticing that dI_{λ} can be represented as a sum

$$dI_{\lambda} = D - d\Phi$$

where $D: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ (1/p+1/p'=1) is given by

$$D(u)v = \int_{\Omega} \nabla u \cdot \nabla v |\nabla u|^{p-2} dx$$

and $\Phi: W_0^{1,p}(\Omega) \to \mathbf{R}$ is given by

$$\Phi(u) = \frac{\lambda}{q+1} \int_{\Omega} |u|^{q+1} dx + \int_{\Omega} F(x, u) dx.$$

D is an into isomorphism and $d\Phi$ is compact. To prove the later, we shall need the following technical result:

Lemma 6. Suppose that $(u_n)_n$ is a sequence of elements of $W^{1,p}_0(\Omega)$ such that

$$u_n \to u \text{ in any } L^{r_i}(\Omega), \text{ where } r_i = \alpha_i s_i p^* / (\alpha_i (p^* - 1) - p^*) \text{ and } i \in \{1, \ldots, k\}$$

and

 $u_n \to u \quad a.e.$ Then $f(x, u_n) \to f(x, u)$ in $L^{p^*/(p^*-1)}(\Omega)$.

Proof. Let $\varphi \in \bigcap_{i=1}^{k} L^{r_i}(\Omega)$. An easy application of Hölder inequality shows that

$$A_1 |\varphi|^{s_1} + \ldots + A_k |\varphi|^{s_k} \in L^{p^*/(p^*-1)}(\Omega)$$

which yields the membership of $f(x,\varphi)$ to $L^{p^*/(p^*-1)}(\Omega)$. Particularly, this is the case for all $f(x,u_n)$, where $n \in \mathbf{N}^*$.

We can assume (by passing to a subsequence if nessary) that there exist functions $h_i \in L^{r_i}(\Omega)$ $(1 \leq i \leq k)$ such that $|u_n| \leq h_i$ for every $n \in \mathbb{N}^*$ and every $i \in \{1, \ldots, k\}$. Then all functions $f(x, u_n)$ are dominated by

$$A_1|h_1|^{s_1} + \ldots + A_k|h_k|^{s_k} \in L^{p^*/(p^*-1)}(\Omega)$$

and thus by Dominated Convergence Theorem we can conclude that f(x, u) is in $L^{p^*/(p^*-1)}(\Omega)$ too.

Lemma 7. The mapping $d\Phi: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ is compact.

Proof. Let $(u_n)_n$ be a bounded sequence of elements of $W_0^{1,p}(\Omega)$. By passing to a subsequence if nessary, we can assume in addition that

$$u_n \to u \text{ in } L^1(\Omega) \text{ and in all spaces } L^{r_i}(\Omega) \ (1 \le i \le k)$$

 $u_n \to u \ a.e.$

Then in order to end the proof it suffices to show that $d\Phi(u_n) \to d\Phi(u)$. That can be done easily by combining the well known property of continuity of Nemytski operator (see [4], Proposition B1) with the following inequality

$$\|d\Phi(u_n) - d\Phi(u)\| \le \lambda C_1 \left(\int_{\Omega} |u_n|u_n|^{q-1} - u|u|^{q-1} |^{1/q} dx \right)^q + C_2 \left(\int_{\Omega} |f(x,u_n) - f(x,u)|^{p^*/(p^*-1)} dx \right)^{1-1/p^*}.$$

To prove this inequality notice that $|d\Phi(u_n)v - d\Phi(u)v|$ is majorized, for every $v \in W_0^{1,p}(\Omega)$, by

$$\begin{aligned} \left| \lambda \int_{\Omega} \left(\left| u_{n} v | u_{n} \right|^{q-1} - u v | u |^{q-1} \right|^{1/q} \right) dx &+ \int_{\Omega} (f(x, u_{n}) v - f(x, u) v) dx \right| \\ &\leq \lambda \int_{\Omega} \left| u_{n} | u_{n} |^{q-1} - u | u |^{q-1} \right| \cdot |v| dx + \int_{\Omega} |f(x, u_{n}) - f(x, u)| \cdot |v| dx \\ &\leq \lambda \left(\int_{\Omega} \left| u_{n} | u_{n} |^{q-1} - u | u |^{q-1} \right|^{1/q} dx \right)^{q} \cdot \left(\int_{\Omega} |v|^{1/(1-q)} dx \right)^{1-q} + \\ &+ \left(\int_{\Omega} |f(x, u_{n}) - f(x, u)|^{p^{*}/(p^{*}-1)} dx \right)^{1-1/p^{*}} \cdot \left(\int_{\Omega} |v|^{p^{*}} dx \right)^{1/p^{*}}. \end{aligned}$$

Then the Sobolev's embeddings yield positive constants C_1 and C_2 such that the last estimate can be continued as

$$\leq \left[\lambda C_1 \left(\int_{\Omega} |u_n|u_n|^{q-1} - u|u|^{q-1}|^{1/q} dx\right)^q + C_2 \left(\int_{\Omega} |f(x, u_n) - f(x, u)|^{p^*/(p^*-1)} dx\right)^{1-1/p^*}\right] \cdot \|v\|$$

and the proof is done. $\hfill \square$

Lemma 8. The functional I_{λ} satisfies the Palais-Smale condition.

Proof. Let $(u_n)_n$ be a sequence of elements of $W_0^{1,p}(\Omega)$ such that

$$M = \sup |I_{\lambda}(u_n)| < \infty \text{ and } dI_{\lambda}(u_n) \to 0.$$

We have to show that it contains a converging subsequence. For, notice first that $(u_n)_n$ is necessarily bounded. In fact, for n sufficiently large we have

$$\begin{split} M + \mu \|u_n\| &\geq \frac{1}{p} \int_{\Omega} |\nabla u_n|^p dx - \frac{\lambda}{q+1} \int_{\Omega} |u_n|^{q+1} dx - \int_{\Omega} F(x, u_n) dx - \\ &- \mu \int_{\Omega} |\nabla u_n|^p dx + \lambda \mu \int_{\Omega} |u_n|^{q+1} dx + \mu \int_{\Omega} f(x, u_n) u_n dx \\ &= (\frac{1}{p} - \mu) \int_{\Omega} |\nabla u_n|^p dx - \lambda (\frac{1}{q+1} - \mu) \int_{\Omega} |u_n|^{q+1} dx + \\ &+ \int_{\Omega} [\mu f(x, u_n) u_n - F(x, u_n)] dx \\ &\geq (\frac{1}{p} - \mu) \|u_n\|^p - \lambda K_1 (\frac{1}{q+1} - \mu) \|u_n\|^{q+1} - CK_2 \|u_n\|^{\alpha}, \end{split}$$

386

where K_1 and K_2 are suitable positive constants (and C and μ are given by condition f_3) above).

Now we can apply the compactness of $d\Phi$ to infer the existence of a subsequence $(v_n)_n$ of $(u_n)_n$ such that $(d\Phi(v_n))_n$ is converging, say to w. Because

$$v_n = D^{-1}(dI_{\lambda}(v_n)) + D^{-1}(d\Phi(v_n))$$

we can conclude that $v_n \to D^{-1}(w)$. \square

References

- A. Ambrosetti, H. Brezis and G. Cerami, Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems, J. Funct. Anal. 122 (1994), 519-543.
- 2. Th. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, preprint, 1994.
- 3. L. Boccardo, M. Escobedo and I. Peral, A Dirichlet Problem Involving Critical Exponent, Nonlinear Anal. Theory Math. Appl., to appear.
- P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS n⁰65, Amer. Math. Soc., R.I., 1986.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, CRAIOVA 1100, ROMANIA *E-mail address*: niculesc@udjmath1.sfos.ro