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A CLASS OF DIRICHLET BOUNDARY VALUE PROBLEMS WHICH

ADMIT INFINITELY MANY SOLUTIONS
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Abstract. We indicate su�cient conditions under which the Dirichlet boundary value

problem �
��pu = �ujujq�1 + f(x; u) in 


uj@
 = 0

admits in�nitely many solutions of negative energy.

Let 
 be a bounded smooth domain in RN (N � 3) and 0 < q < p�1 < N�1. Consider
the following Dirichlet boundary value problem for the p-Laplacian,

(D�)

(
��pu = �ujujq�1 + f(x; u) in 


uj@
 = 0

where f : 
 � R ! R, f = f(x; t), is a continuous function which satis�es the following
three conditions:

f1) f is odd with respect to the second variable;

f2) f satis�es an estimate of the form

jf(x; t)j � A1(x) � jtj
s1 + : : : +Ak(x) � jtj

sk

where si 2 (q; p� 1), Ai 2 L�i(
) and �i > p?=(p? � si � 1) for each i;

f3) There exists C > 0, � 2 (0; p) and � 2 (0; 1=p) such that

j� � f(x; t) � t� F (x; t)j � Cjtj�

for all x and t.

As usually, p? =
Np

N�p
denotes the critical exponent and

F (x; t) =

Z t

0

f(x; �)d�:

The problem (D�) has been investigated by Bartsch and Willem [2], who were able to

prove the existence of in�nitely many solutions of negative energy for every � > 0, when
p = 2 and f(x; t) = tjtjr�1 with 0 � r � 2� � 1. That gave a positive answer to a problem

raised by Ambrosetti, Brezis and Cerami [1]. The aim of our paper is to show that a similar
conclusion is valid in the context of p-Laplacian:

Theorem 1. Under the above conditions on p, q and f , the problem (D�) admits

in�nitely many solutions of negative energy for every � > 0.

A slight modi�cation of our argument yields the existence of in�nitely many solutions
for (D�), even for � = 0. However, in this case we are unable to precise the energy sign.
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The energetic functional associated to (D�) is I� : W 1;p
0 (
)! R, where

I�(u) =
1

p

Z



jrujpdx�
�

q + 1

Z



jujq+1dx�

Z



F (x; u)dx:

Since I� is C1 and

dI�(u)v =

Z



ru � rvjrujp�2dx� �

Z



uvjujq�1dx�

Z



f(x; u)vdx

for all u; v 2 W
1;p
0 (
), the proof of Theorem 1 reduces to the fact that I� has in�nitely

many negative critical values. That is done via a well known topological arugment which
can be expressed in terms of genus as follows:

Lemma 2. (See [4], Proposition 9:3). Suppose that E is a real Banach space and

I 2 C1(E;R) is an even functional, bounded from below, which satis�es the Palais-Smale

condition. Letting

� = fA � Enf0g j A is closed and symmetric g

and

�n = fA 2 � j 
(A) � ng; n 2 N

each number

cn = inf
A2�n

sup
u2A

I(u)

is a critical value of I. Moreover, if c = ck = : : : = ck+j then


(fujI(u) = c and I 0(u) = 0g) � j + 1:

In particular, if j > 1, then I admits in�nitely many critical points of level c.

We shall show that I� ful�lls the hypotheses of Lemma 2. Clearly, I� is even.

Lemma 3. The functional I� is bounded from below.

Proof. BecauseW 1;p
0 (
) embedds continuously in any Lr(
) with 1 � r � p?, there exist

positive constants C0; C1; : : : ; Ck such that

I�(u) �
1

p
kukp �

�C
q+1
0

q + 1
kukq+1 �

kX
i=1

Csi+1
i

si + 1
kAikL�i kuk

si+1

for every u 2 W
1;p
0 (
). The right hand cannot go to �1, due to the fact that p > q + 1,

s1 + 1; : : : ; sk + 1. That yields the assertion of our Lemma 3.

The fact that the critical values cn are negative (for n � 1) constitutes Corollary 5 below.
For, we need a technical result about the level sets

Ic� = fu 2W 1;p
0 (
)jI�(u) � cg:

Lemma 4. For every n 2N? there exists an " > 0 such that 
(I�"� ) � n.

Proof. Let En be an n-dimensional subspace of W
1;p
0 (
) and denote by Snr the sphere of

center 0 and radius r > 0 in En. BecauseW
1;p
0 (
) embedds continuously in any L(si+1)�i(
)

(where 1=�i + 1=�i = 1) we infer the existence of positive constants C0; C1; : : : ; Ck such
that

I�(�u) �
1

p
�p �

�

q + 1
(�C0)

q+1 +

kX
i=1

(�Ci)
si+1

si + 1
kAikL�i
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for every u 2 Sn1 and every � > 0. Consequently, there exist � > 0 and " > 0 such that

I�(�u) � �" for every u 2 Sn1

i.e. Sn� � I�"� . Because Sn� � �n, we conclude that 
(I
�"
� ) � n.

Corollary 5. For every n 2N?,

cn = inf
A2�n

sup
u2A

I�(u) < 0:

It remains to prove that I� satis�es the Palais - Smale condition. That will be done in

several steps, by noticing that dI� can be represented as a sum

dI� = D � d�

where D : W 1;p
0 (
)! W�1;p0

(
) (1=p+ 1=p0 = 1) is given by

D(u)v =

Z



ru � rvjrujp�2dx

and � : W
1;p
0 (
)! R is given by

�(u) =
�

q + 1

Z



jujq+1dx+

Z



F (x; u)dx:

D is an into isomorphism and d� is compact. To prove the later, we shall need the
following technical result:

Lemma 6. Suppose that (un)n is a sequence of elements of W 1;p
0 (
) such that

un ! u in any Lri(
); where ri = �isip
?=(�i(p

?
� 1)� p?) and i 2 f1; : : : ; kg

and

un ! u a.e.

Then f(x; un)! f(x; u) in Lp?=(p?�1)(
).

Proof. Let ' 2
kT

i=1

Lri(
). An easy application of H�older inequality shows that

A1j'j
s1 + : : : +Akj'j

sk 2 Lp?=(p?�1)(
)

which yields the membership of f(x; ') to Lp?=(p?�1)(
). Particularly, this is the case for
all f(x; un), where n 2N

?.

We can assume (by passing to a subsequence if nessary) that there exist functions hi 2

Lri(
) (1 � i � k) such that junj � hi for every n 2 N
? and every i 2 f1; : : : ; kg. Then all

functions f(x; un) are dominated by

A1jh1j
s1 + : : : +Akjhkj

sk 2 Lp?=(p?�1)(
)

and thus by DominatedConvergence Theoremwe can conclude that f(x; u) is in Lp?=(p?�1)(
)
too.

Lemma 7. The mapping d� : W 1;p
0 (
)! W�1;p0

(
) is compact.

Proof. Let (un)n be a bounded sequence of elements of W 1;p
0 (
). By passing to a

subsequence if nessary, we can assume in addition that

un ! u in L1(
) and in all spaces Lri(
) (1 � i � k)

un ! u a:e:
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Then in order to end the proof it su�ces to show that d�(un) ! d�(u). That can be

done easily by combining the well known property of continuity of Nemytski operator (see
[4], Proposition B1) with the following inequality

kd�(un)� d�(u)k � �C1

�Z



��unjunjq�1 � ujujq�1
��1=q dx�q

+

+ C2

�Z



jf(x; un)� f(x; u)j
p?=(p?�1)

dx

�1�1=p?
:

To prove this inequality notice that jd�(un)v � d�(u)vj is majorized, for every v 2

W
1;p
0 (
), by�����

Z



���unvjunjq�1 � uvjujq�1
��1=q� dx+ Z




(f(x; un)v � f(x; u)v)dx

����
� �

Z



��unjunjq�1 � ujujq�1
�� � jvjdx+ Z




jf(x; un)� f(x; u)j � jvjdx

� �

�Z



��unjunjq�1 � ujujq�1
��1=q dx�q

�

�Z



jvj1=(1�q)dx

�1�q
+

+

�Z



jf(x; un)� f(x; u)j
p?=(p?�1)

dx

�1�1=p?
�

�Z



jvjp
?

dx

�1=p?
:

Then the Sobolev's embeddings yield positive constants C1 and C2 such that the last
estimate can be continued as

�

�
�C1

�Z



��unjunjq�1 � ujujq�1
��1=q dx�q

+

+C2

�Z



jf(x; un)� f(x; u)j
p?=(p?�1)

dx

�1�1=p?#
� kvk

and the proof is done.

Lemma 8. The functional I� satis�es the Palais-Smale condition.

Proof. Let (un)n be a sequence of elements of W
1;p
0 (
) such that

M = sup jI�(un)j <1 and dI�(un)! 0:

We have to show that it contains a converging subsequence. For, notice �rst that (un)n
is necessarily bounded. In fact, for n su�ciently large we have

M + �kunk �
1

p

Z



jrunj
pdx�

�

q + 1

Z



junj
q+1dx�

Z



F (x; un)dx�

� �

Z



jrunj
pdx+ ��

Z



junj
q+1dx+ �

Z



f(x; un)undx

= (
1

p
� �)

Z



jrunj
pdx� �(

1

q + 1
� �)

Z



junj
q+1dx+

+

Z



[�f(x; un)un � F (x; un)]dx

� (
1

p
� �)kunk

p
� �K1(

1

q + 1
� �)kunk

q+1
�CK2kunk

�;
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where K1 and K2 are suitable positive constants (and C and � are given by condition f3)

above).
Now we can apply the compactness of d� to infer the existence of a subsequence (vn)n

of (un)n such that (d�(vn))n is converging, say to w. Because

vn = D�1(dI�(vn)) +D�1(d�(vn))

we can conclude that vn ! D�1(w).
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